

CENTRE FOR QUANTUM TECHNOLOGY, SINGAPORE

CLARENDON LABORATORY AND KEBLE COLLEGE, UNIVERSITY OF OXFORD

INSTITUTE FOR SCIENTIFIC INTERCHANGE, TURIN

Tensor networks vs. Monte Carlo for stochastic processes

1. The system – classical stochastic and pure quantum dynamics

- 2. Our method Tensor networks
- 3. Main rival Dynamical Monte Carlo
- 4. Comparison for high variance observables

Representing the state of a system

Introducing the basics

Local configs (e.g. spin ½) Global configs

State vector

Probabilities

Quantum (pure states)

 $z_{\ell}, d \text{ values}$ $z_{\ell} = \pm 1, d = 2$ $\mathbf{z} = (z_1, \dots, z_N)$

 $ert \psi
angle = \sum_{\mathbf{z}} \psi(\mathbf{z}) ert \mathbf{z}
angle$ $ert \psi(\mathbf{z}) ert^2$

 $D = d^N$

Stochastic (probabilistic mixtures) $\oint \oint \oint \oint \oint \oint \oint \oint$

> $z_{\ell}, d \text{ values}$ $z_{\ell} = \pm 1, d = 2$

$$\mathbf{z} = (z_1, \dots, z_N)$$
$$D = d^N$$

 $|P\rangle = \sum_{\mathbf{z}} P(\mathbf{z}) |\mathbf{z}\rangle$ $P(\mathbf{z})$

Evolving the state of a system

Introducing the basics

Master equation

Rearrangement

Evolution equation

Evolution operator

Unitary evolution

Site:
$$1 \ 2 \ \dots \ \ell \ \ell + 1 \ \dots \ \ell$$

 $\mathrm{i}\hbar\frac{\partial}{\partial t}|\psi(t)\rangle = H|\psi(t)\rangle$

 $|\Psi(t)\rangle = \mathrm{e}^{-\mathrm{i}Ht/\hbar}|\Psi(0)\rangle$

Markovian stochastic process

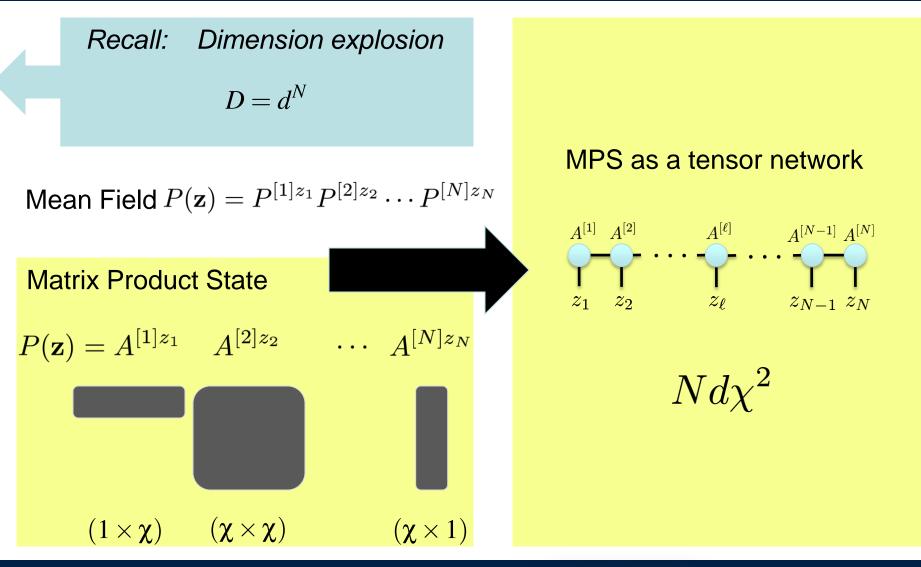
Site:
$$1 \quad 2 \quad \dots \quad \ell \quad \ell \quad \ell \quad M$$

$$\frac{\partial P(\mathbf{z},t)}{\partial t} = \sum_{\mathbf{z}' \neq \mathbf{z}} \left(P(\mathbf{z}',t) H(\mathbf{z}',\mathbf{z}) - P(\mathbf{z},t) H(\mathbf{z},\mathbf{z}') \right)$$

$$\begin{aligned} \langle \mathbf{z} | H | \mathbf{z}' \rangle &= H(\mathbf{z}', \mathbf{z}) \text{ for } \mathbf{z}' \neq \mathbf{z}, \\ \langle \mathbf{z} | H | \mathbf{z} \rangle &= -\sum_{\mathbf{z}' \neq \mathbf{z}} H(\mathbf{z}, \mathbf{z}'). \\ \frac{\partial}{\partial t} | P(t) \rangle &= H | P(t) \rangle \end{aligned}$$

 $|P(t)\rangle = \mathrm{e}^{Ht}|P(0)\rangle$

Solving the representation problem



Gibbs distribution compressibility

 A_{μ}

<u>.</u>

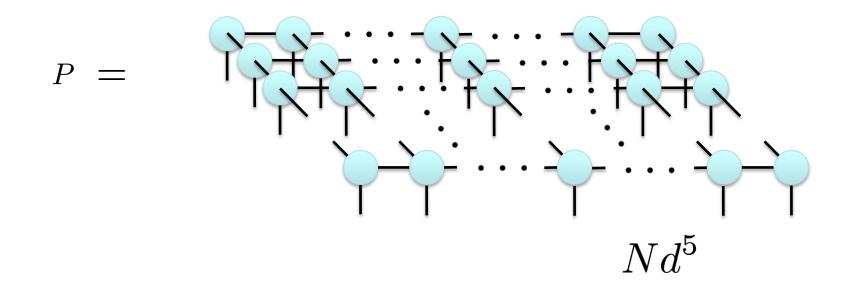
Transfer matrices

Transfer matrix method

2D and beyond

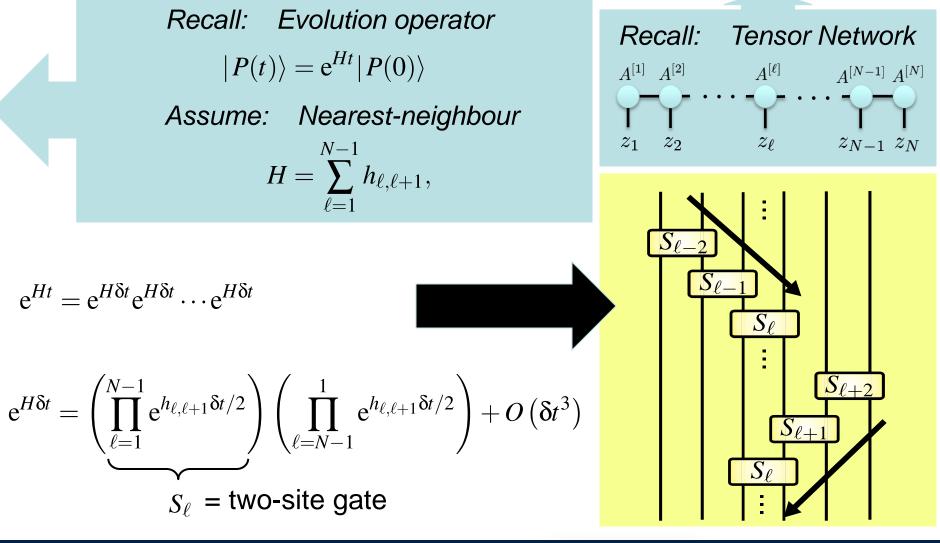
Works with other geometries, e.g. 2D arrangement:

$$E(\mathbf{z}) = -J \sum_{\langle \ell \ell' \rangle} z_{\ell} z_{\ell'} - \lambda \sum_{\ell} z_{\ell'}$$



M. Levin and C. P. Nave, Phys. Rev. Lett. 99, 120601 (2007).

Solving the evolution problem



No runaway of correlations in quench

Steady distributions, e.g. Gibbs, have limited correlations and are thus compressible.

A quench begins AND ENDS in a steady distribution.

Correlations can't keep building up as for pure quantum systems.

The competitor – Dynamical Monte Carlo

Expected value $\langle O \rangle = \int [Ds] O[s] \mathcal{P}[s]$

Sample paths $\mathbf{s}^1, \cdots, \mathbf{s}^M$

Average

 $\bar{O}_M = \frac{1}{M} \sum_{m=1}^M O[\mathbf{s}^m]$

Typical error

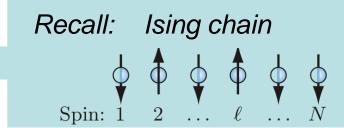
 $\langle \Delta \bar{O}_M \rangle = \sqrt{\frac{\operatorname{Var}[O]}{M}}$

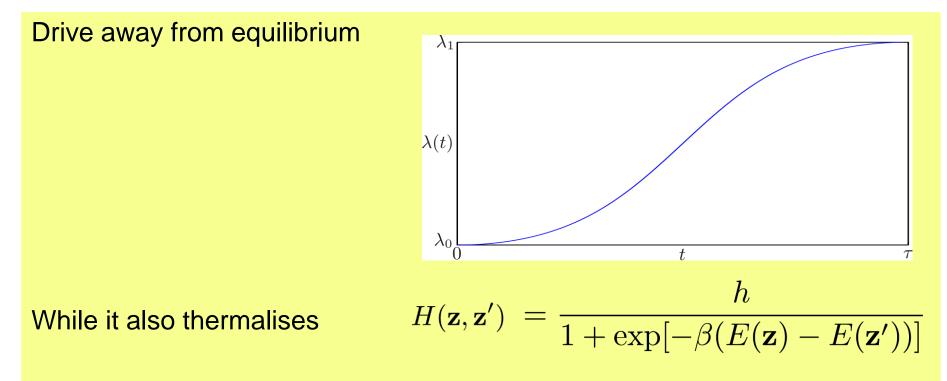
Number of paths needed

$$M = \frac{\operatorname{Var}[O]}{\epsilon \langle O \rangle^2} = \frac{v}{\epsilon}$$

Large variance = Difficult

Quench





High variance observables

Configuration-dependent (magnetisation)

Path-dependent (work done)

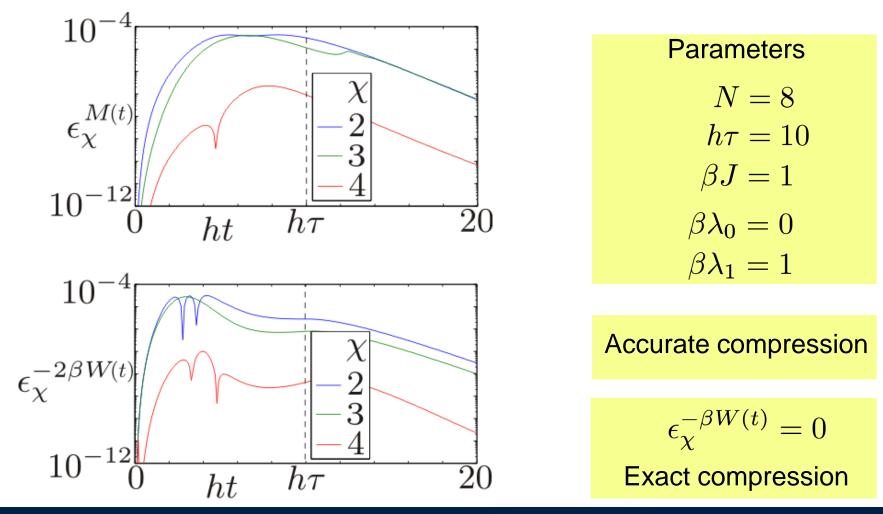
High-variance examples (exponentially scaling with N) $v = e^{\mathcal{O}(N)}$

$$M(t) = \sum_{\ell} z_{\ell}(t)$$
$$W(t) = -\int_{0}^{t} ds M(s) \dot{\lambda}(s)$$
$$e^{M(t)}$$
$$e^{-2\beta W(t)}$$
$$e^{-\beta W(t)}$$

UNIVERSITY OF

Small system results

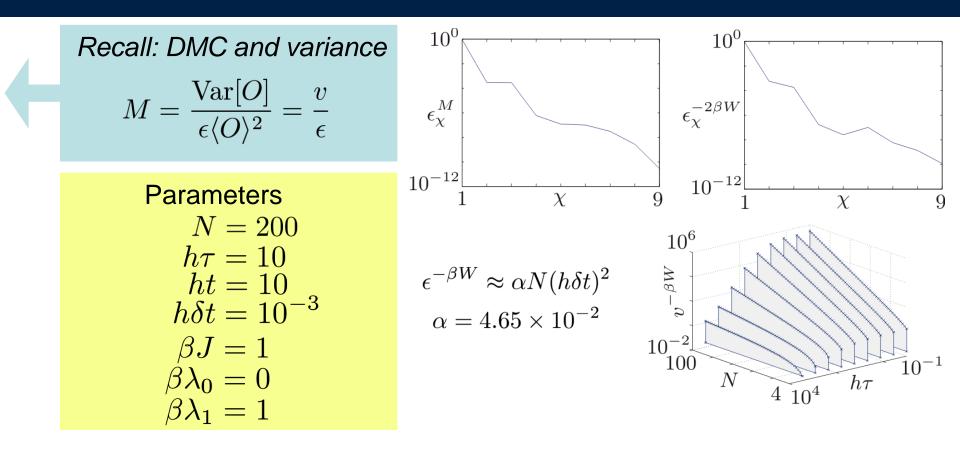
Fractional error due to compressibility at a single time, small system



UNIVERSITY OF

OXFOR

Large system results



Exponentially increasing variance

Exponential samples needed to match tensor networks

Example: 200-spin calculation, taking an hour, but needing $\approx 10^{17}$ samples

Summary and future directions

1. Tensor networks simulate stochastic processes

2. Is this the way to estimate high variance observables?

3. Good option for tensor networks in 2D?

What else can we do with tensor networks – PDEs?

Thanks for listening

Thomas Elliott

Stephen Clark

Dieter Jaksch

T. H. Johnson, S. R. Clark, and D. Jaksch, Phys. Rev. E 82, 036702 (2010)

T. H. Johnson, T. J. Elliott, S. R. Clark, and D. Jaksch, arXiv:1410.3319

Tensor Network Library, tensornetworktheory.org

Questions?

